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Locally Equilibrium Diffusion Processes. I. Geometry 
of Local Thermodynamic Equilibrium States 

Andrzej Trzfsowski I 

Received March 2, 1988 

The geometric description of local thermodynamic equilibrium states in a locally 
homogeneous body is formulated. The considered geometry is defined on the 
basis of the condition that the gauge procedure of the partial derivative operations 
should preserve the form of the equations describing the local thermodynamic 
equilibrium state of the homogeneous body with diffusion, and be consistent 
with the description of diffusion as a Markovian diffusion process with different 
mean arriving and starting velocities. The statistical entropy of the diffusion 
process is examined. 

1. INTRODUCTION 

The classical diffusion theory is unsatisfactory for many reasons. The 
most important is the use of this theory for the description of diffusion 
processes for which the stationary distributions of  diffusing matter appear 
only in the thermodynamic equilibrium state of a body with diffusion. The 
classical diffusion theory does not consider, for example, the possibility of 
formation, as a consequence of the diffusion, of so-called dissipative struc- 
tures, that is, nonhomogeneous, nonequilibrium stationary states stable for 
small disturbances. 

The suff• condition for the applicability of thermodynamic methods 
for the description of dissipative structures is the assumption that in the 
considered system so-called local thermodynamic equilibrium states are 
being realized (Glansdorf and Prigogine, 1973). 

The physical meaning of local equilibrium involves the postulate of  the 
existence in each sufficiently large (but small from the macroscopic point 
of  view) element of the medium volume of a thermodynamic equilibrium 
state with the remaining part of the medium (treated as the reservoir). 
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Thermodynamic quantities for each such thermodynamic subsystem are 
expressed by the same functions as those corresponding to the whole system, 
replacing only equilibrium values of variables by their local values. As a 
whole, the considered thermodynamic system (e.g., the body with diffusion) 
may be not in the thermodynamic equilibrium state. 

However, the thermodynamic theory of dissipative structures is often 
not sufficient for the description of macroscopic structure formation in 
media not in the thermodynamic equilibrium state. This makes it necessary 
to complement the thermodynamics (or sometimes replace it) by other 
methods (e.g., dynamic systems theory or information theory) (Haken, 
1983). In this paper, as such a complement of the thermodynamics, a 
geometric version is accepted of the thermodynamic hypothesis that some 
properties of linear systems are preserved in states far from the thermody- 
namic equilibrium state (Glansdorf and Prigogine, 1973). Namely, if it is 
assumed that locally certain differential relations of the linear theory of the 
diffusion phenomenon are valid, then fields compensating the influence of 
the varying of the thermodynamic parameters (according to the concept of 
the local thermodynamic equilibrium state) on these relations should be 
introduced. In fact, this is an application (in the thermodynamic context) 
of the method known from field theory of the partial derivative operation 
gauge. 

Thermodynamics, however, is not of field-theoretic character and this 
makes the choice of relations which should undergo the gauge procedure 
more difficult. This paper accepts, as the thermodynamic counterpart of 
"Lagrange background" in field theory, the stochastic model of the diffusion 
process considering the existence of different mean arriving and starting 
velocities of the diffusing particle (Section 2). This model is used to define 
which differential relations should undergo the gauge procedure (Sections 
3 and 4). 

Applying the procedures complementing the thermodynamics, it should 
be taken into account that some thermodynamic variables may change their 
primary sense by becoming so-called order parameters (Haken, 1983). The 
effective temperature of the local thermodynamic equilibrium state, intro- 
duced in Section 8, is an example of such an order parameter. 

This paper also discusses the interpretation of the diffusion process as 
the realization of the statistical description of the dynamic system (Sections 
5 and 6) and the statistical entropy of such an interpreted diffusion process 
is examined (Section 7). 

Also considered are diffusion processes in a locally homogeneous 
crystalline body, which can be described as random motions of the particle 
(Trzesowski and Kotowski, 1985). Here local homogeneity means that the 
considered crystalline body consists of a single material but its crystal lattice 
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is distorted by the defects (e.g., Trzesowski,  1987). Formally ,  the consider-  
at ions in Part  I o f  this work  can apply  to the diffusion of  particles possessing 
mass  (e.g., interstitial a toms)  as well as massless  particles (e.g., lattice 
vacancies) .  However ,  because  of  the appl icat ions  in Part II ,  the physical  
interpretat ions are fo rmula ted  only for the case when the diffusing particle 
has mass.  

2. ARRIVING AND STARTING DIFFUSION PROCESSES 

Theories  of  diffusion usually ignore the possibil i ty that  the mean  
velocity o f  a diffusing particle arriving at a point  may  differ f rom the mean  
velocity of  a particle starting f rom that  point.  In fact, these theories consider  
only the mean  starting velocity of  the particle f rom the point  (see Section 
3). The present  section discusses the basic  notions connected with the 
stochast ic  model  of  the diffusion processes permit t ing the existence of  these 
two mean  velocities. 

I will use the fol lowing designations.  Let eA = (6AS; B,~I,  2 , . . . ,  n), 
A = 1, 2 , . . . ,  n, denote  the s tandard  base in R n. I f  X = X A e A  is a s tandard  
designat ion of  a vector  (identified with a point)  in R ", then let X = ( X  A) 

denote  its coordinates  in the base  (EA), as well as the coordinate  system 
on R n cor responding  to that  base. The analogous  convent ion will be used 
in the case of  curvil inear coordinates  in R n. Al though the mathemat ica l  
formula t ions  will concern arbi trary n, the physical  interpretat ions will 
concern only the case when n = 3. 

Call a Wienerian process on R" the Markov ian  process W( t )  with values 
in R", 

w(t)= w~ 
(1) A 

Ea = ~a  EA, t e R+ = [0, co) 

whose infinitesimal genera tor  has the form 
a 2 

W(O) = D ab - -  
O X a O X  b 

D ~ = D ba = const,  X ~ = 6~AX A (2) 

: Dab: aJ, 1 , 2 , ' " , n  n D=Dabea~)Eb b ~ l , 2 , . . . ,  c G L + ( n )  

where D is a constant,  real, symmetric ,  posit ive-definite matrix. Then w~ (t) = 
w ( t ) - w ( s ) ,  0 -  < s<-t ,  is a Gauss ian  process and 

E[ws( t ) ]  = 0 
(3) 

E [ w ~ ( t ) @ w s ( t ) ]  = 2D(t  - s) 
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Let 

co(X)  = e (X)eo  

= e A ( X ) E A ,  a = 1, 2 , . . . ,  n (4) 
a 

I e "l[ e(X) eA(x)I~A(~I~ a = A(X); A~,I , . . .  = ~ G L + ( n )  
a a ~ l , .  , n  

be the local basis field in R n, generally nonintegrable (Trz~sowski, 1987, 
Part I). If the appropriate assumptions concerning the smoothness of the 
matrix e(X) are fulfilled, then there exists exactly one stochastic process 
W(t) in R" such that 

fo ' Vt-->O W( t )=Wo+ e ( W ( t ) ) d w ( t )  

= w A ( t ) E A  (5 )  

and having continuous trajectory with probability 1 (Girhman and 
Skorokhod, 1983). The integral in the formula (5) is the so-called stochastic 
integral (Girhman and Skorokhod, 1983). The representation (5) of the 
process W(t) is usually written in the form of the so-called stochastic Ito 
equation: 

dW(t) = dWa(t)EA 

dWA(t) = eA(W(t)) dw"(t) 
a 

(6) 

with the initial condition W(0) = Wo. Because equations (6) may be written 
in the form 

dW(t) = d w a ( t ) e a ( W ( t ) )  (7) 

the process W(t) will be called locally Wienerian. This process is a Markovian 
process with infinitesimal generator of the form 

W(O) = D AR (X)aaam OA = O / a X  A (8) 

where 

D ( X )  = DA~(X)~A |  

= I]DaB(X)]I ~ GL+(n) (9) 

D A ~ ( x )  = e A ( X ) e B ( X ) D  o~ = D ~ ' A ( x )  
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For this process 

E[dW( t )  JW(t) : X] = 0 
(10) 

E [ d W ( t ) |  dW(t ) Iw( t )  = x ]  = 2 D ( X )  dt 

where, according to the formula (9), D(X) is a real, symmetric, positive- 
definite matrix. 

If b(X, t) = bA(x,  t)• A is a vector function with values in R", then, 
with the appropriate assumptions about the smoothness of functions b and 
e, there exists exactly one stochastic process Xs(t), t >  s >0,  fulfilling the 
equation 

I L Vt>-s X , ( t ) = X +  b(X~(r), ~') d r +  e(X,(~')) dw(,)  (11) 
s 

and having a continuous trajectory with the probability 1 (Girhman and 
Skorokhod, 1983). Stochastic processes of the form (11) are called solutions 
of the stochastic Ito equation 

dX(t) = b(X(t), t) dt + dW(X(  t); t) 

dW(X(t); t) = e(X(t)) dw(t) (12) 

fulfilling the initial condition X(s)= X. 
If  functions b(X, t) and D(X) fulfill the appropriate conditions of 

smoothness and behavior at infinity, then the stochastic process X(t), t-> 0, 
fulfilling (12) is a special case of the so-called Markovian diffusion processes 
(Girhman and Skorokhod, 1983). Let us denote by P(s, X; t, U) the proba- 
bility of arriving at the set U c R" at the moment t, under the condition of 
starting from the point X at the moment s < t, i.e., 

P(s,X; t, U ) = P ( X ( t ) c  uIx(s)=X), O<_s<t (13) 

In the case when the solution of the stochastic Ito equation (12) is a 
Markovian process, the function P(s, X; t, U) of the "forward" conditional 
probability is of the form (Girhman and Skorokhod, 1983) 

P(s,X: t, U ) = P ( X s ( t ) ~  U) (14) 

If X(t), t->0, is a Markovian process, then changing the reading of 
the time direction leads to the function P.(s, X; t, U) of the "backward" 
conditional probability, described as the probability of starting from the 
set U c R" at the moment t under the condition of arriving at the point X 
at the moment s >  t (Kovalenko et al., 1983): 

P,(s,X; t, U ) = P ( X ( t ) ~  UIX(s) =X], O<_t<s (15) 
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Let X(t), t->O, be the Markovian diffusion process defined by condi- 
tions (10) and (12). We can assume (Nelson, 1967) that there exists a vector 
function b,(X, t) with values in R" and there exists a stochastic process 
W,( t ) ,  t - 0 ,  with values in R ' ,  such that if X,s(t),  0 -  < t -  < s, is a solution 
of the stochastic Ito equation 

dX,( t )  = b , (X,( t ) ,  t) dt + dW,( t )  (16) 

fulfilling the arriving condition X,s(s) --- X, then the function of backward 
conditional probability [formula (15)] is of the form 

P,(s, X; t, U) = P(X,s(t)  c U) (17) 

We restrict our considerations to the case when 

dX,( t )  = b , (X,( t ) ,  t) dt - dW(X,( t) ;  t) (18) 

The Markovian diffusion processes X(t) and X,(t) ,  t->0, defined by 
equations (12) and (18) will be called the starting and arriving diffusion 
processes, respectively. Infinitesimal generators of starting and arriving 
diffusion processes are of the form Ts(O) and T,s(O), respectively, where 
(Danket, 1971) 

Ts(O) = bA(x, S)OA + W(O) 
(19) 

T,~(O) = bA(x,  s)O A - -  W(O) 

where the operator W(O) is of the form (8). Functions b and b,  will be 
called the mean starting and arriving velocities, respectively, because 

E[dX( t )  IX(t) = X] = b(X, t) dt 
(20) 

E [ d X , ( t )  IX,( t )  = X] = b,(X, t) dt 

Let us consider Markovian processes such that the functions of forward 
[formula (13)] and backward [formula (15)] conditional probability are 
defined by the starting and arriving diffusion processes [formulas (14) and 
(17)]. Moreover, let us assume the existence of the density function p(X, t) 
of the absolute probability of localization, the same for the starting IX(t)] 
and arriving [X,(t)] processes: 

P(X,( t )  c U) = P(X(t) c U) = Jv  p(X, t) d V ( X )  (21) 

where d V ( X )  = d"X  is the volume element in the Euclidean space R". Then 
the function p(X, t) should fulfill two Fokker-Planck equations at the same 
time: the equation 

Otp + F,p = 0 (22a) 

F, = F,(O)--=OA(bA(x, t) " )--OAOB(DAB(x) �9 ) (22b) 
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corresponding to the starting process and the equation 

O,p+F,,p =0 (23a) 

F,,  F,,(O) A = =Oa(b, (X,  t ) ' )+OAOB(DAB(x)  " ) (23b) 

corresponding to the arriving process. Let us denote 

v = l ( b , + b )  : vA(x ,  t)EA 
(24) 

U =�89  : uA(x ,  t)eA 

Equations (22) and (23) will be fulfilled at the same time by the function 
p = p(X, t) iff the following equation of continuity is fulfilled: 

O,p + aA(pV A) = 0 (25) 

the field u allows the representation 

u A= - 1  0s(DaSp) (26) 
P 

and the flux 

jA :- pu A (27) 

where u a is of the form (26), is defined with exactness by the transformation 
-A -AA j .._>j = jA+~A,  OAd)A=o (28) 

The vector field v is called the diffusion peculiar velocity and the vector field 
u is the diffusion velocity (Trzesowski and Kotowski, 1985). The coefficients 
D AB= DAB(x) appearing in the formula (26) are called the diffusion 
coefficients. 

So, finally, we observe that the theory of Markovian processes allows 
processes which can be characterized by the existence of conjugate arriving 
and starting diffusion processes and for which equations (24)-(28) are valid. 

3. GENERALIZATION OF CLASSICAL DESCRIPTION OF 
DIFFUSION PHENOMENON 

Let us consider a diffusion process which may be described as a 
Markovian diffusion process and for which the density function p(X, t) of 
the localization probability [formula (21)] equals the concentration of the 
diffusion particles [see further Section 5 and Trz~sowski and  Kotowski 
(1985), i.e., 

n(X, t) 
p(X, t) 

S(t) 

N(t) = fR ~ n(X, t) dV(X) 

(29) 
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where n(X,  t) is the number of diffusing particles per unit of volume. Then 
equation (25) may be written in the form of an equation of local balance 
of  the number of diffusing particles: 

Otl'l -+- Oa( nD A) : fl(  t )n 
(30) 

fl( t) = l~( t ) /  N (  t) 

If the diffusion coefficients are constant, then in the formulas in Section 
2 one can assume, without restricting the generality of considerations, that 

e A = ~A 
a 

and equation (26) takes the form 

uA = _ 1  DABoBp = _2DABoBR 

P (31) 
R = ln(p /po)  1/2, D AB = const 

where Po is an arbitrary positive constant with the dimension of  concentra- 
tion p. Then the flux j A  defined by [cf. (27) and (29)] 

j A  = n u  A = _ D A B o B  n (32) 

has the form of a diffusion flux in a homogeneous body caused by the 
nonuniform distribution of  the diffusing particles close to the thermody- 
namic equilibrium state. In the case of the diffusion of atoms in a crystalline 
solid body, such a form of the diffusion flux may be accepted with the 
assumption that the lattice vacancies are everywhere in local thermal equili- 
brium or when their concentration is small in relation to the concentration 
of the diffusing atoms (Christian, 1975). With such identification, taking 
the direction of the diffusion flux (32) opposite to the concentration gradient 
direction (so-called Fick law) denotes the positive difiniteness of the 
diffusion coefficient matrix D = II D A B  II" The symmetry of that matrix leads 
to the so-called Onsager relation. Since from equation (24) 

v = b + u  (33) 

then in the case (31) the equation of balance (30) may be written in the 
form of the equation of  diffusion with sources: 

at n -- DABOAOBn + OA(nb  A) = fl( t )n  (34) 

Equation (34) is equivalent to the Fokker-Planck equation (22) for the 
starting process, having constant diffusion coefficients. 
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In the classical diffusion theory, equation (34) is complemented with 
the so-called Stokes relation: 

F = ~ b  ( 3 5 )  

which connects the force F acting on a point defect with its mean starting 
velocity b; ~ is a friction coefficient and its inverse 1/~ is called the mobility 
of the defect. If, for example, we ignore the influence of the point defect 
on the interatomic forces in the crystal lattice, then in the external field of 
small elastic strains CAB 

FA = K v B C  O AeBC (36) 

where V AB is a constant with the dimension of volume and K is a constant 
with the dimension of stress (Kosevitch, 1972). In the isotropy approxi- 
mation 

D AB =Dt$ AB, V AB = Vo8 AB (37) 

and K is equal to the bulk modulus of the elastic medium and the formulas 
(31) and (36) take the following form: 

u = - 2 D  VR (38a) 

F = - Vo Vet (38b) 

where tr = (1/3) tr er is the hydrostatic pressure corresponding to the field 
of external stresses er, and Vo is the volume of the material "transferred" 
by the diffusing atom. From (33), (35), and (38) it follows that in this case 
the peculiar velocity v of the diffusion process is an irrotational field: 

v = - 2 D V S  
(39) 

S = ( V o / 2 D : ) t r +  g 

The force F of  the form (38b) is, in the linear approximation, the force with 
which the external field acts on the center of dilatation in the isotropic 
medium. It can be shown that in this approximation the point defects do 
not interact (Kosevitch, 1972). In this case, it is admissible to identify the 
density of distribution of the localization probability p with the concentra- 
tion of the diffusing defects [formula (29)], though in general the centers 
of dilatation interact and in such cases the approximation (29) may be 
considered only for small concentrations of the diffusing particles 
(Trzesowski and Kotowski, 1985). 

If the number of diffusing particles does not change [ N( t )  = No = const 
in formula (29)] and the diffusion coefficient D is defined by the so-called 
Einstein relation 

D = k T / ~  (40) 
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where k is Boltzmann's constant and T is an absolute temperature, then 
from (34)-(38) it follows that the concentration function p(X)  of the 
stationary distribution of the diffusing matter equals the density of the 
Boltzmann distribution probability (Trzesowski and Kotowski, 1985): 

p(X)  = C e x p [ - U ( X ) / k T ]  
(41) 

u ( x )  = ( Vo/ ~)o-(X) 

where the constant C is of the form 

C =Po exp(F/kT) ,  F = - k T  In Z 
(42) 

t "  

Z = Po JR 3 exp[-- U(X) / kT]  dV(X)  

The constant F may be identified with the free energy for one particle of 
a particle system in the thermodynamic equilibrium state [in an external 
field with potential U(X)]  and 

F = E - TS (43a) 

E = (U) = IR 3 p(X)  U(X)  dV(X)  (43b) 

S = - k  IR ~ p(X) ln[p(X) /po]  dV(X)  = -2k(R)  (43c) 

where E and S may be identified, respectively, with the energy and ther- 
modynamic entropy for one particle of a particle system in the thermody- 
namic equilibrium state (Trzesowski and Kotowski, 1985). 

The above result shows that if we want to consider stationary states of 
diffusing matter that are not thermodynamic equilibrium states, we have to 
give up the classical Stokes relation (35). Then, however, the mean starting 
velocity b loses its physical distinction and equation (34) can no longer be 
treated as the fundamental equation describing the phenomenon of 
diffusion. There is also no reason to distinguish the arriving diffusion process. 
Because of that, here we take as the basic fundamental kinematic variables 
of the diffusion process the diffusion velocity u and (in the place of the 
mean starting velocity b) the peculiar diffusion velocity v. The relation of 
these velocities to the concentration p of the diffusing matter is defined by 
formulas (25) and (26). 

4. LOCAL THERMODYNAMIC EQUILIBRIUM 

Let us consider the case when the stochastic character of the diffusion 
process is defined by random fluctuations around the stationary local 
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thermodynamic equilibrium states (cf. Section 1). Let us introduce, in order 
to describe such a process, "the thermodynamic observer" in the form of 
the vector basis stationary fields e~(X), X~ R 3, a = 1, 2, 3, defined by the 
formula (4). Because equations (12) and (18) may be written in the form 
[see equation (7)] 

d X - b ( X ,  t )  d t  = dwa( t)ea(X) 

dX,  - b , (X, ,  t) dt = - d W  ~ ( t)ea (X,) 
(44) 

and the diffusion coefficient matrix has the representation 

D(X) = D"be,,(X)| (45) 

then the thermodynamic observer (4) "sees" locally the diffusion process 
fluctuations as the random motion of a Brownian particle [which is 
characteristic for the thermodynamic equilibrium states of the diffusion 
process (Reif, 1965)]. The diffusion velocity u [equation (26)] will be locally 
observed as the diffusion velocity in a homogeneous body of the form (31) 
(we deal with a locally homogeneous body!), with the partial derivative OA 
appearing in equations (26) and (31) changed for the covariant derivative 
Va such that 

VA DBc (X) = 0 (46) 

Then 

tlA= -1V B[ DAn(X)p ] 
P 

1 DAB(x)vB  p 
P 

(47) 

In this paper consideration is restricted to the case when the covariant 
derivative V is univocally defined by the diffusive properties of the medium 
[i.e., by the diffusion coefficients DAB(X)]. Then V is a symmetric metric 
covariant derivative (Levi-Civita covariant derivative) for the tensor D(X). 
The diffusion coefficient tensor is not a convenient measure of length, 
because from (47) it follows that its absolute dimension equals the absolute 
dimension of velocity, i.e., [D] = [u]--[ t  -I] (Schouten, 1951). Because of 
that, we will assume that V is a covariant Levi-Civita derivative correspond- 
ing to the metric tensor G(X), X E R 3, defined by 

D(X) = DG(X) -1, 

[D] = [t2t-1], [G] = [/2], 

D > 0  
(48) 

[D] = [ t - ' ]  
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where D is a certain constant characterizing the diffusion process. It follows 
from the form of  the connection coefficients FAc(G) of that covariant 
derivative 

FAc(G) = �89 ( OcGBD + OBGco -- OoGBc ) (49) 

that tensors D and G define the same covariant derivative. If  X = (X A) is 
the so-called geometric dimensional frame reference characterized by (Post, 
1982) 

[X A] = [l], [dX A] = [l], [O/OX A] = [l -~] (50) 

then 

D(X) = DAB(X)aA| 

G(X) -- C A B ( X ) d X  A | d X  B 
(51) 

DAB(X) = DGAB(x), ~a = a/19xa 

[DAB(x)] = [12t-1], [GAB(X)] = [GAB(x)] = [ 1 ]  

The existence of  the constant D with the dimension of diffusion 
coefficient is not connected with whether we consider the diffusion of defects 
possessing mass (i.e., interstitial atoms) or massless defects (i.e., lattice 
vacancies). In Part II of  this work it will turn out that only a second constant 
characterizing the diffusion process (in the form of the diffusive counterpart 
of  Planck's constant) will allow the distinction of what sort of  diffusing 
defect we deal with. 

The diffusion process which can be described by equations (25)-(28) 
in which the partial derivative da is replaced by the covariant derivative VA 
with the connection coefficients (49) will be called a locally equilibrium 
diffusion process (in a locally homogeneous body). In order to formulate 
the stochastic description of such a diffusion process, we have to modify 
the definition of  the arriving and starting diffusion processes formulated in 
Section 2. It resolves itself into replacing the locally Wienerian process in 
R 3 by Brownian motion W(t) ,  with the values in the Riemannian manifold 
M = ( R  3, G ) ,  where the metric tensor G is defined by (48). That process in 
M is defined, in the arbitrary coordinate system X = (X A) on M, by the 
condition that its infinitesimal generator should have the form W(V), i.e., 
[cf. (8)] 

W(V) = DAB(X)V AVB = DA (52) 

where A is the Laplace-Beltrami operator on M: 

A f =  GAB(X)~ AV Bf 

= G(X)-U2OA(G(X)I/2GAB(X)OBf) (53) 

G(X)=detlIGAB(X)II, f ~ C~(M) 
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Because 

W(V) = ma(X)Oa + DAB(X)OAOB 

mA(X) = _ O  "c (x)rAc(G)(X) 
(54) 

we can assume that the Brownian process in M fulfills the following 
stochastic Ito equation [cf. equation (6)]: 

dWA( t) = mA( W( t) ) at+ ca(W(t)) dw~( t) 
a 

(55) 

The starting [X(t)] and arriving [X,(t)] diffusion processes in M can 
be defined, in the arbitrary coordinate system X = (X a) on M, by [cf. (12) 
and (18)] 

dXA( t) = bA(X( t), t) dt + dWA(X(  t); t) 

dXA( t) = b~( X , (  t), t) dt - dwA( x , (  t); t) (56) 

dWa(Z; t) = mA(z)  dt + eA(Z) dwa( t) 
a 

The infinitesimal generating operators of the considered diffusion processes 
are then of the following form [cf. (19)]: 

Ts = (b A + ma)oA + DABOAOB 
(57) 

= bAVA+ W(V) = L(V)  

for the starting process and 

T,s = ( b A -  mA)OA -- DABOAaB 

= b A v ~ -  W(V) = r , , (V)  (58) 

for the arriving process. If  the covariant derivative V has a vanishing 
curvature tensor, then there exists a coordinate system X = (X a) on M 
such that FBac(G) _-* 0 and 

ma(X) *- 0 (59) 

and the considered diffusion processes are reduced to the processes dis- 
cussed in Section 2. Now the mean starting and arriving velocities do not 
equal, respectively, the functions b and b,  appearing in equations (56) 
because 

E [ dXA(t) I X ( t )  = X ]  = BA(x, t) dt 
(60) 

E[ dXA( t) tX,(t) = X] = BA( x ,  t) dt 
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where X(t) and X,( t )  denote, respectively, the starting and arriving diffusion 
processes in M and where 

BA= bA + mA 

B A A A (61) = b , - m  

So, for the considered diffusion processes, equations of the form (44) are 
valid, but with b and b ,  replaced by B and B , ,  respectively. But this does 
not cause a change of  the peculiar velocity of diffusion, because from (61) 
it follows that [cf. (24)]: 

l A ~(B, + B A) 1 A =~(b ,  + b A) = v A (62) 

Let us denote by w (X) the volume 3-form of the Riemannian manifold 
M = (R 3, G), i.e., 

co(X) = Veel(X) ^ e2(X) A e3(X) 

= G(X)I/2dxl ^ dX 2 ̂  dX 3 (63) 

G(X)  '/2 = Voe(X), e(X) = det e(X)  

Vo = (det]] Gab ]])1/2 

where e (X)  is a matrix defined in (4), G(X)  is defined in (53), and {ea(X), 
a = 1, 2, 3} is a dual base to the base (4): 

ea(X) �9 eb(X) = 6~ (64) 

Because the 3-form w(X) is defined by the thermodynamic observer (4) and 
a certain characteristic dimensionless constant volume Vo, the volume 
element in M corresponding to it, 

dV(X) = a ( x )  1/2 daX (65) 

where daX is an element of Euclidean volume in R 3, we will call this the 
diffusive volume and we will interpret dV(X)  as the volume of the physically 
infinitesimal neighborhood of a point X in the (local) equilibrium state. 
Defining the density function p(X, t) of the absolute probability of localiz- 
ation by (21) with the condition that dV(X)  is the diffusive volume, we 
obtain that this function should at the same time fulfill Fokker-Planck 
equations of  the form (22a) and (23a), with the change of 0 for V, i.e., that 
(Dankel, 1971; Dohrn and Guerra, 1978) 

Ft = F,(V) = Va(ba(X, t)" ) - DA 
(66) 

F,t = V,t(V) = V a(b~(X, t). ) + DA 
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Hence, in analogy to Section 2, it follows that the probability density p and 
peculiar diffusion velocity v = VaOA [equation (62)] should fulfill a continuity 
equation of the form 

Otp + ~ A(pl) A) = 0 (67) 

the diffusion velocity u = uAOA, defined by [cf. (24)] 
/ ~ A = I  A " 5(b, - b A) (68) 

should be of the form 

uA = __1 DAB(X)OB p (69) 
P 

and the flux (27) is defined with exactness by the transformation (28), with 
the partial derivative OA replaced by the covariant derivative VA. Let us 
observe that because here p is a scalar, so the formula (47) takes the form 
(69) analogous to the form (31) of the diffusion velocity in a homogeneous 
body. So locally the Fick law (32) is valid [with D An = DAB(x) and p of 
the form (29)]. 

In the case (29) [with clV(X) of the form (65)--see Section 5], equation 
(67) can be written in the form 

O,n+Oa(nv a) = a(X, t)n 

ec(X, t)= fl( t ) - y (  X, t) 
(70) 

y = OvG 1/2= YAV A, fl(t) = _N(t)/N(t) 

~/a : FBB( G) : OA G1/2 

From a comparison of the forms of equations (30) and (70) it follows that 
the nonintegrability of the diffusive volume dV(X) distribution is one of 
the reasons for point defect creation (or annihiliation) in a body with 
diffusion. 

So, finally, the locally equilibrium diffusion process can be described 
as a Markovian process in the Riemannian manifold M = (R 3, G) character- 
ized by the existence of conjugate arriving and starting diffusion processes. 
This differential manifold is the geometric model of the material structure 
of a locally homogeneous body with local thermodynamic equilibrium states 
of diffusion process and will be called the material space of the (locally 
homogeneous) body with diffusion. 

5. DYNAMICAL SYSTEM ASSOCIATED WITH DIFFUSION 
PROCESS 

Let us consider the microstate of the locally equilibrium diffusion 
process, i.e., N(t)-element subset f~, c M defined as the set of positions 
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of all diffusing particles at the moment t - 0 .  The probability dpt(X) of 
observing at the moment t the diffusing particle in the neighborhood of the 
point X~ M with the diffusive volume dV(X) is 

dpt(X) =p(X, t) dV(X) (71) 

Because we consider identical, but distinguishable particles with negligible 
interactions (Section 3), the microstate l'lt may be identified with an N(t)- 
element statistical ensemble for the random variable X: R+ --> M, defined as 
the position of one of the diffusing particles (arbitrarily distinguished) at 
the moment t >-0. As a consequence, the probability dpt(X) may be calcu- 
lated from the formula (Klimontovitch, 1982) 

dpt(X) = lim n(X, t)dV(X)/N(t) (72) 
N(t)-->oo 

and the approximation (29) is the better, the greater N(t) is. 
Let v(X, t) = va(X, t)OA be a peculiar velocity of the diffusion process 

defined by equations (67) and (69). Let us consider equation (67) as the 
generalized Liouville equation, corresponding to the dynamical system on 
the manifold M defined by the equation 

= v(X, t) (73) 

We will call this the dynamical system associated with the diffusion process. 
The function p = p(X, t) defined by equations (71) and (72) is the probability 
distribution function for the ensemble of systems each of which is governed 
by equation (73), but which differ in their initial conditions according to a 
certain arbitrarily chosen initial probability distribution function po(X)= 
p(X, 0) (Klimontovitch, 1982; Ramshaw, 1986). This means that a locally 
equilibrium process may be considered as one realizing the statistical 
description of its associated dynamical system, i.e., that diffusion process 
can be interpreted as the flow of "gas" of ensemble systems in the space M. 

We can observe, then, that in the case (29) the description of the state 
of a locally homogeneous body with locally equilibrium diffusion process 
can be formulated in terms of the statistical description of the dynamical 
system associated with that diffusion process. In this paper we will restrict 
ourselves to considering, as the state function for the locally equilibrium 
diffusion process, the measure of indetermination of that statistical descrip- 
tion in the form of the so-called statistical entropy (Section 7). 

6. DIFFUSION PROCESS CONCENTRATED IN DOMAIN 

In this section we consider the locally equilibrium diffusion process 
concentrated in the regular domain f / c  M, with the boundary of/(Westen- 
holz, 1978), Le., a process whose concentration function p(X, t) fulfills the 
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condition 

->0 for X ~  
V t ~ I  p ( X , t ) = 0  for X c M - 1 2  (74) 

where I c R+ is a certain time interval. From (74) it follows that 

V t ~ I  f p (X , t )  d V ( X ) = l  (75) 

and in the formula (29) [with the volume element d V ( X )  of the form (65)] 

S ( t )  = In n(X, t) dV(X) (76) 

From (74) it also follows that the function p: f~ x I-~ R+ should fulfill the 
equation [see equation (67)] 

Otp+div(pv)=O in 12• 
(77) 

p = 0  on 0 ~ x I  

where v is the peculiar diffusion velocity and div denotes the divergence 
operator, based on the covariant derivative V defined in Section 4. The 
diffusion velocity u is defined by (69) and may be represented in the form 
[cf. (31)] 

II A = G A B  uB 

1 
UB = ---- D OBp = - 2 D  OBR (78) 

P 

R = ln(p/po) 1/2 

The Riemannian submanifold M 112 = (12, G) of the material space M 
of a body with diffusion, in which equations (75)-(78) induced from M are 
valid, is the material space describing the diffusion process concentrated 
in ~.  The dynamical system associated with that diffusion process (Section 
5) is defined by equation (73) considered on f~ x / ,  and equation (77) is 
then the generalized Liouville equation corresponding to it. Let us observe 
that because 12 # R 3, the concentration function p(X, t) fulfilling conditions 
(71) and (77) with the change of M for M112 cannot be connected in the 
way discussed in Sections 2 and 4 with the Markovian diffusion processes 
in ~1. However, this function can be treated as the one defining the distribu- 
tion of probability for the ensemble of systems governed by equation (73) 
[see the commentary after equation (73)]. We can observe, then, that the 
notion of dynamical system associated with a diffusion process can be 
treated as a generalization of the description of that process based on the 
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consideration of the Markovian diffusion processes. The further part of the 
paper will be based on that generalization rather than on the theory of 
Markovian processes. 

7. STATISTICAL ENTROPY OF DIFFUSION PROCESS 

By the statistical entropy of the diffusion process we will call the integral 
St(p) defined by Ciesielski, 1971; Klimontovitch, 1982) 

St(P)= fR O(P,(X)) 

| =pos(p,/po) dV(X), p,(X) =p(X, t) 
(79) 

s ( x ) = ~ - k x l n x  for x > 0  
for x = 0 

where k is Boltzmann's constant and Po is an arbitrary homogeneous 
concentration. The statistical entropy differs from the so-called information 
entropy only in the multiplier kpo (e.g., Ramshaw, 1986). For the diffusion 
process concentrated in the regular domain f~(Section 6), we may assume, 
without restricting the generality of further considerations, that 1) is a 
support of the function p defined by the condition (74); in that case we 
will additionally assume that 

V(a)  = j~  dV(X) < ~ (80) 

From (78) and (79) it follows that for such a diffusion process 

S,(p) = - Jn kp, ln(pJpo) dV 

= -2k (g ) ,  (81) 

where 

f 
(f)t = _ JR 3 p,(X)f(X) dV(X) 

= j a  p,(X)f(X) dV(X) (82) 

From a comparison of the equations (31) and (43c) with equations (78)-(82) 
it follows that the statistical entropy of the locally equilibrium diffusion 
process concentrated in the domain f~ is the generalization of the thermody- 
namic entropy on one particle of the diffusing particle system in the ther- 
modynamic equilibrium state. Thus, (Ciesielski, 1971) 

St(p) <- k ln[po V(fl)] (83) 
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which means that the statistical entropy of the considered diffusion process 
has an upper bound corresponding to the chaotic equilibrium distribution 
in s of diffusing particles (Reif, 1965). 

From equations (77), (81), and (82) and from the divergence theorem 
of Gauss for Riemannian manifolds (Westenholz, 1978), it follows that 

d 
S,(p) = ~ S,(p) = k(div v), (84) 

Because for the 3-form volume o) [equation (63)] 

LvoJ = (div v)to (85) 

where L, is the Lie derivative (Westenholz, 1978), then from (82) and (84) 
it follows that the sign of the derivative St(P) depends on the field of 
infinitesimal changes of the diffusive volumes dV(X), X ~ ~ ,  defined by the 
peculiar diffusion velocity v. In particular, if in almost every point X~ f~: 

(a) div v>  0 (local expansion), then ,~t(P) > 0 (increase of entropy) 
(b) div v < 0 (local compression), then St(p) < 0 (decrease of entropy) 
(c) div v = 0 (local volume preservation), then St(P) = 0 (the constancy 

of entropy). 

From (83) it follows that an increase of the statistical entropy indicates 
a change toward a decrease of ordering in the distribution of the diffusing 
matter. From the point of view of information theory, the entropy of the 
nonequilibrium thermodynamic system increases because the information 
about its internal configuration is lost upon its evolution with the passage 
of time. In fact, this is the basic sense of the second law of thermodynamics, 
which says that in an isolated system the entropy does not decrease (Andrew, 
1984). Hence, it follows that a decrease of the statistical entropy is possible 
only in a thermodynamically open system. It should be remembered that 
the thermodynamic openess of the system can be connected not only with 
its contact with the neighborhood in the topological sense, but can also, 
e.g., denote the interaction with the internal degrees of freedom of the 
system, not included in the variables describing its thermodynamic state 
(Ramshaw, 1986). From the point of view of information theory, the decrease 
of entropy is the effect of the supply of new information to the system 
(Andrew, 1984). 

From the above remarks it follows that eases (a) and (b) have the clear 
thermodynamic sense, consistent with their informational sense. In ease (c) 
the volume is preserved in the configuration space of the dynamical system 
associated with the considered diffusion process. This suggests that this 
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case can be connected with the Poincar6 recurrence theorem for the dynami- 
cal system. In that sense, in case (c) we may talk about the reversibility of  
the process (cf. Ramshaw, 1986). The lack of a direct relation between the 
statistical and thermodynamic entropy makes the discussion of such reversi- 
bility impossible in terms of  the dissipation of  energy. It may be admitted 
that the case St(P) ~ 0 denotes the existence of dissipation, but it cannot 
be expected that St(p) = 0 always denotes its lack. 

8. R E M A R K S  

The proposed geometric method of description of  the local thermo- 
dynamic equilibrium states does not require considering all thermodynamic 
parameters and functions of state appearing in the description of  the global 
thermodynamic equilibrium state, though it does not exclude the possibility 
that some of  them appear in a hidden way in that description. In order to 
convince oneself of this, one should consider the case when the material 
space of the body with diffusion (Sections 4 and 6) is conformally Euclidean, 
i.e., the case when in the formula (48) 

G(X) = ,X (X)C(X) 
(86) 

A(X)>0,  A c C~176 [A]=[1]  

where C is a metric tensor on R 3, to which corresponds the Levi-Civita 
covariant derivative with vanishing curvature tensor. The tensor C can be 
regarded as the right Cauchy-Green tensor induced in the body by the 
elastic deformation of its solid figure (Trzesowski, 1987, Part I). In that 
case, the tensor of the diffusion coefficients is of the form 

D(X) = D(X)C(X)- '  
(87) 

D(X) = A (X)-aD 

Taking the constant D in the form (40) and assuming additionally that in 
the considered local thermodynamic equilibrium state the friction coefficient 
~" is equal to its (constant) equilibrium value, we obtain 

D(X) = kT(X)/~ 
(88) 

A (X) = T~ T(X), T = const 

Thus, in the considered case the property that (in general) the material 
space of the body with diffusion is non-Euclidean can be characterized by 
the existence of a field of  effective temperatures describing the local ther- 
modynamic equilibrium steady state in the diffusive volumes dV(X) of the 
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body. The diffusive volume of the body is in that case defined by [see 
equation (65)] 

dV(X) = ~ (X) 3/2 dV0(X) 

dVo(X ) : C(X) 1/2 d3X (89) 

C(X) = detll CA~(X)II 

where dVo(X) is a volume element in the elastically deformed body, i.e., 
there exists a coordinate system X --- ( X  A) such that in this s y s t e m C A ~ ( X )  * 
~A. and dV0(X) * d3X. 

From (88) and (89) it follows that the diffusive volume is inversely 
proportional to the effective temperature of that domain. It denotes, 
according to the formula (71), that for the stationary locally equilibrium 
distribution of the diffusing matter (see the beginning of Section 4 and the 
Introduction) the probability of the localization of the particle in the local 
thermodynamic equilibrium domain is inversely proportional to the effective 
temperature of that domain. The formula (89) is then consistent with the 
statements concerning the influence of the temperature on the amplitude 
of vibrations of particles around their equilibrium positions (Ashcroft and 
Mermin, 1986). 

In the considered case, the source term y in equation (70) is defined 
by functions YA, A = 1, 2, 3, of the form 

~a(X) ~--3h ( X)3/20A In h(X)  

. _3[ T~ T ( X ) ] B / 2 T ( X ) - l O A T ( X )  (90) 

This means that the "thermodynamic impulse" describing the creation (or 
annihilation) of point defects which accompanies the locally equilibrium 
diffusion process is proportional to the effective temperature gradient. 

ACKNOWLEDGMENTS 

This work was carried out within the framework of the cooperation 
program between the Department of the Theory of Continuous Media at 
the Institute of Fundamental Technological Research of the Polish Academy 
of Sciences and the Physics Faculty at the Universitat-Gesamthochschule 
Paderborn. 

R E F E R E N C E S  

Andrew, K. (1984). American Journal of Physics, 52, 492. 
Ashcroft, N. W., and Mermin, N. D. (1986). Solid State Physics, PWN, Warsaw. 
Christian, J. W. (1975). The Theory of Transformations in Metals and Alloys, Part I, Pergamon 

Press, Oxford. 



564 Trz~sowski 

Ciesielski, Z. (1971). Wiadomogci Matematyczne, 12, 233 (in Polish). 
Dankel, T. G., Jr. (1971). Archives of Rational Mechanics, 37, 192. 
Dohrn, D., and Guerra, F. (1978). Lettere alNuovo Cimento, 22, 121. 
Girhman, I. I., and Skorokhod, A. W. (1968). Stochastic Differential Equations, Naukova 

Dumka, Kiev (in Russian). 
Glansdorf, P., and Prigogine, I. (1973). Theory of Structure Stability and Fluctuations, Mir, 

Moscow. 
Haken, H. (1983). Advanced Synergetics, Springer-Verlag, Berlin. 
Klimontovitch, J. L. (1982). Statistical Physics, Nauka, Moscow On Russian). 
Kovalenko, I. N., Kuznetsov, N. J., and Shurenkov, W. M. (1983). Stochastic Processes, Naukova 

Dumka, Kiev (in Russian). 
Kosevitch, A. M. (1972). Foundations of Crystal Lattice Mechanics, Nauka, Moscow (in 

Russian). 
Nelson, E. (1967). Dynamical Theories of Brownian Motion, Princeton University Press, 

Princeton, New Jersey. 
Post, E. J. (1982). Foundations of Physics, 12, 169. 
Ramshaw, J. D. (1986). Physics Letters A, 116, 110. 
Reif, F. (1965). Statistical Physics, McGraw-Hi!l, New York. 
Schouten, J. A. (1951). Tensor Analysis for Physicists, Clarendon Press, Oxford. 
Trz~sowski, A. (1987). International Journal of Theoretical Physics, 26, 341. 
Trz~sowski, A., and Kotowski, R. ,(1985). International Journal of Theoretical Physics, 24, 533. 
Westenholz, C. von. (1978). Differential Forms in Mathematical Physics, North-Holland, 

Amsterdam. 


